在前面一篇文章中,介绍了在Android系统中Binder进程间通信机制中的Server角色是如何获得Service Manager远程接口的,即defaultServiceManager函数的实现。Server获得了Service Manager远程接口之后,就要把自己的Service添加到Service Manager中去,然后把自己启动起来,等待Client的请求。本文将通过分析源代码了解Server的启动过程是怎么样的。
本文通过一个具体的例子来说明Binder机制中Server的启动过程。我们知道,在Android系统中,提供了多媒体播放的功能,这个功能是以服务的形式来提供的。这里,我们就通过分析MediaPlayerService的实现来了解Media Server的启动过程。
首先,看一下MediaPlayerService的类图,以便我们理解下面要描述的内容。
我们将要介绍的主角MediaPlayerService继承于BnMediaPlayerService类,熟悉Binder机制的同学应该知道BnMediaPlayerService是一个Binder Native类,用来处理Client请求的。BnMediaPlayerService继承于BnInterface<IMediaPlayerService>类,BnInterface是一个模板类,它定义在frameworks/base/include/binder/IInterface.h文件中:
- template<typename INTERFACE>
- class BnInterface : public INTERFACE, public BBinder
- {
- public:
- virtual sp<IInterface> queryLocalInterface(const String16& _descriptor);
- virtual const String16& getInterfaceDescriptor() const;
-
- protected:
- virtual IBinder* onAsBinder();
- };
这里可以看出,BnMediaPlayerService实际是继承了IMediaPlayerService和BBinder类。IMediaPlayerService和BBinder类又分别继承了IInterface和IBinder类,IInterface和IBinder类又同时继承了RefBase类。
实际上,BnMediaPlayerService并不是直接接收到Client处发送过来的请求,而是使用了IPCThreadState接收Client处发送过来的请求,而IPCThreadState又借助了ProcessState类来与Binder驱动程序交互。有关IPCThreadState和ProcessState的关系,可以参考上一篇文章,接下来也会有相应的描述。IPCThreadState接收到了Client处的请求后,就会调用BBinder类的transact函数,并传入相关参数,BBinder类的transact函数最终调用BnMediaPlayerService类的onTransact函数,于是,就开始真正地处理Client的请求了。
了解了MediaPlayerService类结构之后,就要开始进入到本文的主题了。
首先,看看MediaPlayerService是如何启动的。启动MediaPlayerService的代码位于frameworks/base/media/mediaserver/main_mediaserver.cpp文件中:
- int main(int argc, char** argv)
- {
- sp<ProcessState> proc(ProcessState::self());
- sp<IServiceManager> sm = defaultServiceManager();
- LOGI("ServiceManager: %p", sm.get());
- AudioFlinger::instantiate();
- MediaPlayerService::instantiate();
- CameraService::instantiate();
- AudioPolicyService::instantiate();
- ProcessState::self()->startThreadPool();
- IPCThreadState::self()->joinThreadPool();
- }
这里我们不关注AudioFlinger和CameraService相关的代码。
先看下面这句代码:
- sp<ProcessState> proc(ProcessState::self());
这句代码的作用是通过ProcessState::self()调用创建一个ProcessState实例。ProcessState::self()是ProcessState类的一个静态成员变量,定义在frameworks/base/libs/binder/ProcessState.cpp文件中:
- sp<ProcessState> ProcessState::self()
- {
- if (gProcess != NULL) return gProcess;
-
- AutoMutex _l(gProcessMutex);
- if (gProcess == NULL) gProcess = new ProcessState;
- return gProcess;
- }
这里可以看出,这个函数作用是返回一个全局唯一的ProcessState实例gProcess。全局唯一实例变量gProcess定义在frameworks/base/libs/binder/Static.cpp文件中:
- Mutex gProcessMutex;
- sp<ProcessState> gProcess;
再来看ProcessState的构造函数:
- ProcessState::ProcessState()
- : mDriverFD(open_driver())
- , mVMStart(MAP_FAILED)
- , mManagesContexts(false)
- , mBinderContextCheckFunc(NULL)
- , mBinderContextUserData(NULL)
- , mThreadPoolStarted(false)
- , mThreadPoolSeq(1)
- {
- if (mDriverFD >= 0) {
- // XXX Ideally, there should be a specific define for whether we
- // have mmap (or whether we could possibly have the kernel module
- // availabla).
- #if !defined(HAVE_WIN32_IPC)
- // mmap the binder, providing a chunk of virtual address space to receive transactions.
- mVMStart = mmap(0, BINDER_VM_SIZE, PROT_READ, MAP_PRIVATE | MAP_NORESERVE, mDriverFD, 0);
- if (mVMStart == MAP_FAILED) {
- // *sigh*
- LOGE("Using /dev/binder failed: unable to mmap transaction memory.\n");
- close(mDriverFD);
- mDriverFD = -1;
- }
- #else
- mDriverFD = -1;
- #endif
- }
- if (mDriverFD < 0) {
- // Need to run without the driver, starting our own thread pool.
- }
- }
这个函数有两个关键地方,一是通过open_driver函数打开Binder设备文件/dev/binder,并将打开设备文件描述符保存在成员变量mDriverFD中;二是通过mmap来把设备文件/dev/binder映射到内存中。
先看open_driver函数的实现,这个函数同样位于frameworks/base/libs/binder/ProcessState.cpp文件中:
- static int open_driver()
- {
- if (gSingleProcess) {
- return -1;
- }
-
- int fd = open("/dev/binder", O_RDWR);
- if (fd >= 0) {
- fcntl(fd, F_SETFD, FD_CLOEXEC);
- int vers;
- #if defined(HAVE_ANDROID_OS)
- status_t result = ioctl(fd, BINDER_VERSION, &vers);
- #else
- status_t result = -1;
- errno = EPERM;
- #endif
- if (result == -1) {
- LOGE("Binder ioctl to obtain version failed: %s", strerror(errno));
- close(fd);
- fd = -1;
- }
- if (result != 0 || vers != BINDER_CURRENT_PROTOCOL_VERSION) {
- LOGE("Binder driver protocol does not match user space protocol!");
- close(fd);
- fd = -1;
- }
- #if defined(HAVE_ANDROID_OS)
- size_t maxThreads = 15;
- result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads);
- if (result == -1) {
- LOGE("Binder ioctl to set max threads failed: %s", strerror(errno));
- }
- #endif
-
- } else {
- LOGW("Opening '/dev/binder' failed: %s\n", strerror(errno));
- }
- return fd;
- }
这个函数的作用主要是通过open文件操作函数来打开/dev/binder设备文件,然后再调用ioctl文件控制函数来分别执行BINDER_VERSION和BINDER_SET_MAX_THREADS两个命令来和Binder驱动程序进行交互,前者用于获得当前Binder驱动程序的版本号,后者用于通知Binder驱动程序,MediaPlayerService最多可同时启动15个线程来处理Client端的请求。
open在Binder驱动程序中的具体实现,请参考前面一篇文章,这里不再重复描述。打开/dev/binder设备文件后,Binder驱动程序就为MediaPlayerService进程创建了一个struct binder_proc结构体实例来维护MediaPlayerService进程上下文相关信息。
我们来看一下ioctl文件操作函数执行BINDER_VERSION命令的过程:
- status_t result = ioctl(fd, BINDER_VERSION, &vers);
这个函数调用最终进入到Binder驱动程序的binder_ioctl函数中,我们只关注BINDER_VERSION相关的部分逻辑:
- static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
- {
- int ret;
- struct binder_proc *proc = filp->private_data;
- struct binder_thread *thread;
- unsigned int size = _IOC_SIZE(cmd);
- void __user *ubuf = (void __user *)arg;
-
- /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/
-
- ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
- if (ret)
- return ret;
-
- mutex_lock(&binder_lock);
- thread = binder_get_thread(proc);
- if (thread == NULL) {
- ret = -ENOMEM;
- goto err;
- }
-
- switch (cmd) {
- ......
- case BINDER_VERSION:
- if (size != sizeof(struct binder_version)) {
- ret = -EINVAL;
- goto err;
- }
- if (put_user(BINDER_CURRENT_PROTOCOL_VERSION, &((struct binder_version *)ubuf)->protocol_version)) {
- ret = -EINVAL;
- goto err;
- }
- break;
- ......
- }
- ret = 0;
- err:
- ......
- return ret;
- }
很简单,只是将BINDER_CURRENT_PROTOCOL_VERSION写入到传入的参数arg指向的用户缓冲区中去就返回了。BINDER_CURRENT_PROTOCOL_VERSION是一个宏,定义在kernel/common/drivers/staging/android/binder.h文件中:
- /* This is the current protocol version. */
- #define BINDER_CURRENT_PROTOCOL_VERSION 7
这里为什么要把ubuf转换成struct binder_version之后,再通过其protocol_version成员变量再来写入呢,转了一圈,最终内容还是写入到ubuf中。我们看一下struct binder_version的定义就会明白,同样是在kernel/common/drivers/staging/android/binder.h文件中:
- /* Use with BINDER_VERSION, driver fills in fields. */
- struct binder_version {
- /* driver protocol version
- signed long protocol_version;
- };
从注释中可以看出来,这里是考虑到兼容性,因为以后很有可能不是用signed long来表示版本号。
这里有一个重要的地方要注意的是,由于这里是打开设备文件/dev/binder之后,第一次进入到binder_ioctl函数,因此,这里调用binder_get_thread的时候,就会为当前线程创建一个struct binder_thread结构体变量来维护线程上下文信息,具体可以参考一文。
接着我们再来看一下ioctl文件操作函数执行BINDER_SET_MAX_THREADS命令的过程:
- result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads);
这个函数调用最终进入到Binder驱动程序的binder_ioctl函数中,我们只关注BINDER_SET_MAX_THREADS相关的部分逻辑:
- static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
- {
- int ret;
- struct binder_proc *proc = filp->private_data;
- struct binder_thread *thread;
- unsigned int size = _IOC_SIZE(cmd);
- void __user *ubuf = (void __user *)arg;
-
- /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/
-
- ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);
- if (ret)
- return ret;
-
- mutex_lock(&binder_lock);
- thread = binder_get_thread(proc);
- if (thread == NULL) {
- ret = -ENOMEM;
- goto err;
- }
-
- switch (cmd) {
- ......
- case BINDER_SET_MAX_THREADS:
- if (copy_from_user(&proc->max_threads, ubuf, sizeof(proc->max_threads))) {
- ret = -EINVAL;
- goto err;
- }
- break;
- ......
- }
- ret = 0;
- err:
- ......
- return ret;
- }
这里实现也是非常简单,只是简单地把用户传进来的参数保存在proc->max_threads中就完毕了。注意,这里再调用binder_get_thread函数的时候,就可以在proc->threads中找到当前线程对应的struct binder_thread结构了,因为前面已经创建好并保存在proc->threads红黑树中。
回到ProcessState的构造函数中,这里还通过mmap函数来把设备文件/dev/binder映射到内存中,这个函数在一文也已经有详细介绍,这里不再重复描述。宏BINDER_VM_SIZE就定义在ProcessState.cpp文件中:
- #define BINDER_VM_SIZE ((1*1024*1024) - (4096 *2))
mmap函数调用完成之后,Binder驱动程序就为当前进程预留了BINDER_VM_SIZE大小的内存空间了。
这样,ProcessState全局唯一变量gProcess就创建完毕了,回到frameworks/base/media/mediaserver/main_mediaserver.cpp文件中的main函数,下一步是调用defaultServiceManager函数来获得Service Manager的远程接口,这个已经在上一篇文章有详细描述,读者可以回过头去参考一下。
再接下来,就进入到MediaPlayerService::instantiate函数把MediaPlayerService添加到Service Manger中去了。这个函数定义在frameworks/base/media/libmediaplayerservice/MediaPlayerService.cpp文件中:
- void MediaPlayerService::instantiate() {
- defaultServiceManager()->addService(
- String16("media.player"), new MediaPlayerService());
- }
我们重点看一下IServiceManger::addService的过程,这有助于我们加深对Binder机制的理解。
在上一篇文章中说到,defaultServiceManager返回的实际是一个BpServiceManger类实例,因此,我们看一下BpServiceManger::addService的实现,这个函数实现在frameworks/base/libs/binder/IServiceManager.cpp文件中:
- class BpServiceManager : public BpInterface<IServiceManager>
- {
- public:
- BpServiceManager(const sp<IBinder>& impl)
- : BpInterface<IServiceManager>(impl)
- {
- }
-
- ......
-
- virtual status_t addService(const String16& name, const sp<IBinder>& service)
- {
- Parcel data, reply;
- data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
- data.writeString16(name);
- data.writeStrongBinder(service);
- status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
- return err == NO_ERROR ? reply.readExceptionCode()
- }
-
- ......
-
- };
这里的Parcel类是用来于序列化进程间通信数据用的。
先来看这一句的调用:
- data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());
IServiceManager::getInterfaceDescriptor()返回来的是一个字符串,即"android.os.IServiceManager",具体可以参考IServiceManger的实现。我们看一下Parcel::writeInterfaceToken的实现,位于frameworks/base/libs/binder/Parcel.cpp文件中:
- // Write RPC headers. (previously just the interface token)
- status_t Parcel::writeInterfaceToken(const String16& interface)
- {
- writeInt32(IPCThreadState::self()->getStrictModePolicy() |
- STRICT_MODE_PENALTY_GATHER);
- // currently the interface identification token is just its name as a string
- return writeString16(interface);
- }
它的作用是写入一个整数和一个字符串到Parcel中去。
再来看下面的调用:
- data.writeString16(name);
这里又是写入一个字符串到Parcel中去,这里的name即是上面传进来的“media.player”字符串。
往下看:
- data.writeStrongBinder(service);
这里定入一个Binder对象到Parcel去。我们重点看一下这个函数的实现,因为它涉及到进程间传输Binder实体的问题,比较复杂,需要重点关注,同时,也是理解Binder机制的一个重点所在。注意,这里的service参数是一个MediaPlayerService对象。
- status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
- {
- return flatten_binder(ProcessState::self(), val, this);
- }
看到flatten_binder函数,是不是似曾相识的感觉?我们在前面一篇文章中,曾经提到在Binder驱动程序中,使用struct flat_binder_object来表示传输中的一个binder对象,它的定义如下所示:
- /*
- * This is the flattened representation of a Binder object for transfer
- * between processes. The 'offsets' supplied as part of a binder transaction
- * contains offsets into the data where these structures occur. The Binder
- * driver takes care of re-writing the structure type and data as it moves
- * between processes.
- */
- struct flat_binder_object {
- /* 8 bytes for large_flat_header. */
- unsigned long type;
- unsigned long flags;
-
- /* 8 bytes of data. */
- union {
- void *binder; /* local object */
- signed long handle; /* remote object */
- };
-
- /* extra data associated with local object */
- void *cookie;
- };
各个成员变量的含义请参考资料。
我们进入到flatten_binder函数看看:
- status_t flatten_binder(const sp<ProcessState>& proc,
- const sp<IBinder>& binder, Parcel* out)
- {
- flat_binder_object obj;
-
- obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
- if (binder != NULL) {
- IBinder *local = binder->localBinder();
- if (!local) {
- BpBinder *proxy = binder->remoteBinder();
- if (proxy == NULL) {
- LOGE("null proxy");
- }
- const int32_t handle = proxy ? proxy->handle() : 0;
- obj.type = BINDER_TYPE_HANDLE;
- obj.handle = handle;
- obj.cookie = NULL;
- } else {
- obj.type = BINDER_TYPE_BINDER;
- obj.binder = local->getWeakRefs();
- obj.cookie = local;
- }
- } else {
- obj.type = BINDER_TYPE_BINDER;
- obj.binder = NULL;
- obj.cookie = NULL;
- }
-
- return finish_flatten_binder(binder, obj, out);
- }
首先是初始化flat_binder_object的flags域:
- obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
0x7f表示处理本Binder实体请求数据包的线程的最低优先级,FLAT_BINDER_FLAG_ACCEPTS_FDS表示这个Binder实体可以接受文件描述符,Binder实体在收到文件描述符时,就会在本进程中打开这个文件。
传进来的binder即为MediaPlayerService::instantiate函数中new出来的MediaPlayerService实例,因此,不为空。又由于MediaPlayerService继承自BBinder类,它是一个本地Binder实体,因此binder->localBinder返回一个BBinder指针,而且肯定不为空,于是执行下面语句:
- obj.type = BINDER_TYPE_BINDER;
- obj.binder = local->getWeakRefs();
- obj.cookie = local;
设置了flat_binder_obj的其他成员变量,注意,指向这个Binder实体地址的指针local保存在flat_binder_obj的成员变量cookie中。
函数调用finish_flatten_binder来将这个flat_binder_obj写入到Parcel中去:
- inline static status_t finish_flatten_binder(
- const sp<IBinder>& binder, const flat_binder_object& flat, Parcel* out)
- {
- return out->writeObject(flat, false);
- }
Parcel::writeObject的实现如下:
- status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData)
- {
- const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
- const bool enoughObjects = mObjectsSize < mObjectsCapacity;
- if (enoughData && enoughObjects) {
- restart_write:
- *reinterpret_cast<flat_binder_object*>(mData+mDataPos) = val;
-
- // Need to write meta-data?
- if (nullMetaData || val.binder != NULL) {
- mObjects[mObjectsSize] = mDataPos;
- acquire_object(ProcessState::self(), val, this);
- mObjectsSize++;
- }
-
- // remember if it's a file descriptor
- if (val.type == BINDER_TYPE_FD) {
- mHasFds = mFdsKnown = true;
- }
-
- return finishWrite(sizeof(flat_binder_object));
- }
-
- if (!enoughData) {
- const status_t err = growData(sizeof(val));
- if (err != NO_ERROR) return err;
- }
- if (!enoughObjects) {
- size_t newSize = ((mObjectsSize+2)*3)/2;
- size_t* objects = (size_t*)realloc(mObjects, newSize*sizeof(size_t));
- if (objects == NULL) return NO_MEMORY;
- mObjects = objects;
- mObjectsCapacity = newSize;
- }
-
- goto restart_write;
- }
这里除了把flat_binder_obj写到Parcel里面之内,还要记录这个flat_binder_obj在Parcel里面的偏移位置:
- mObjects[mObjectsSize] = mDataPos;
这里因为,如果进程间传输的数据间带有Binder对象的时候,Binder驱动程序需要作进一步的处理,以维护各个Binder实体的一致性,下面我们将会看到Binder驱动程序是怎么处理这些Binder对象的。
再回到BpServiceManager::addService函数中,调用下面语句:
- status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply);
回到一文中的类图中去看一下,这里的remote成员函数来自于BpRefBase类,它返回一个BpBinder指针。因此,我们继续进入到BpBinder::transact函数中去看看:
- status_t BpBinder::transact(
- uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
- {
- // Once a binder has died, it will never come back to life.
- if (mAlive) {
- status_t status = IPCThreadState::self()->transact(
- mHandle, code, data, reply, flags);
- if (status == DEAD_OBJECT) mAlive = 0;
- return status;
- }
-
- return DEAD_OBJECT;
- }
这里又调用了IPCThreadState::transact进执行实际的操作。注意,这里的mHandle为0,code为ADD_SERVICE_TRANSACTION。ADD_SERVICE_TRANSACTION是上面以参数形式传进来的,那mHandle为什么是0呢?因为这里表示的是Service Manager远程接口,它的句柄值一定是0,具体请参考一文。
再进入到IPCThreadState::transact函数,看看做了些什么事情:
- status_t IPCThreadState::transact(int32_t handle,
- uint32_t code, const Parcel& data,
- Parcel* reply, uint32_t flags)
- {
- status_t err = data.errorCheck();
-
- flags |= TF_ACCEPT_FDS;
-
- IF_LOG_TRANSACTIONS() {
- TextOutput::Bundle _b(alog);
- alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand "
- << handle << " / code " << TypeCode(code) << ": "
- << indent << data << dedent << endl;
- }
-
- if (err == NO_ERROR) {
- LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),
- (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");
- err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);
- }
-
- if (err != NO_ERROR) {
- if (reply) reply->setError(err);
- return (mLastError = err);
- }
-
- if ((flags & TF_ONE_WAY) == 0) {
- #if 0
- if (code == 4) { // relayout
- LOGI(">>>>>> CALLING transaction 4");
- } else {
- LOGI(">>>>>> CALLING transaction %d", code);
- }
- #endif
- if (reply) {
- err = waitForResponse(reply);
- } else {
- Parcel fakeReply;
- err = waitForResponse(&fakeReply);
- }
- #if 0
- if (code == 4) { // relayout
- LOGI("<<<<<< RETURNING transaction 4");
- } else {
- LOGI("<<<<<< RETURNING transaction %d", code);
- }
- #endif
-
- IF_LOG_TRANSACTIONS() {
- TextOutput::Bundle _b(alog);
- alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand "
- << handle << ": ";
- if (reply) alog << indent << *reply << dedent << endl;
- else alog << "(none requested)" << endl;
- }
- } else {
- err = waitForResponse(NULL, NULL);
- }
-
- return err;
- }
IPCThreadState::transact函数的参数flags是一个默认值为0的参数,上面没有传相应的实参进来,因此,这里就为0。
函数首先调用writeTransactionData函数准备好一个struct binder_transaction_data结构体变量,这个是等一下要传输给Binder驱动程序的。struct binder_transaction_data的定义我们在一文中有详细描述,读者不妨回过去读一下。这里为了方便描述,将struct binder_transaction_data的定义再次列出来:
- struct binder_transaction_data {
- /* The first two are only used for bcTRANSACTION and brTRANSACTION,
- * identifying the target and contents of the transaction.
- */
- union {
- size_t handle; /* target descriptor of command transaction */
- void *ptr; /* target descriptor of return transaction */
- } target;
- void *cookie; /* target object cookie */
- unsigned int code; /* transaction command */
-
- /* General information about the transaction. */
- unsigned int flags;
- pid_t sender_pid;
- uid_t sender_euid;
- size_t data_size; /* number of bytes of data */
- size_t offsets_size; /* number of bytes of offsets */
-
- /* If this transaction is inline, the data immediately
- * follows here; otherwise, it ends with a pointer to
- * the data buffer.
- */
- union {
- struct {
- /* transaction data */
- const void *buffer;
- /* offsets from buffer to flat_binder_object structs */
- const void *offsets;
- } ptr;
- uint8_t buf[8];
- } data;
- };
writeTransactionData函数的实现如下:
- status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
- int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer)
- {
- binder_transaction_data tr;
-
- tr.target.handle = handle;
- tr.code = code;
- tr.flags = binderFlags;
-
- const status_t err = data.errorCheck();
- if (err == NO_ERROR) {
- tr.data_size = data.ipcDataSize();
- tr.data.ptr.buffer = data.ipcData();
- tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t);
- tr.data.ptr.offsets = data.ipcObjects();
- } else if (statusBuffer) {
- tr.flags |= TF_STATUS_CODE;
- *statusBuffer = err;
- tr.data_size = sizeof(status_t);
- tr.data.ptr.buffer = statusBuffer;
- tr.offsets_size = 0;
- tr.data.ptr.offsets = NULL;
- } else {
- return (mLastError = err);
- }
-
- mOut.writeInt32(cmd);
- mOut.write(&tr, sizeof(tr));
-
- return NO_ERROR;
- }
注意,这里的cmd为BC_TRANSACTION。 这个函数很简单,在这个场景下,就是执行下面语句来初始化本地变量tr:
- tr.data_size = data.ipcDataSize();
- tr.data.ptr.buffer = data.ipcData();
- tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t);
- tr.data.ptr.offsets = data.ipcObjects();
回忆一下上面的内容,写入到tr.data.ptr.buffer的内容相当于下面的内容:
- writeInt32(IPCThreadState::self()->getStrictModePolicy() |
- STRICT_MODE_PENALTY_GATHER);
- writeString16("android.os.IServiceManager");
- writeString16("media.player");
- writeStrongBinder(new MediaPlayerService());
其中包含了一个Binder实体MediaPlayerService,因此需要设置tr.offsets_size就为1,tr.data.ptr.offsets就指向了这个MediaPlayerService的地址在tr.data.ptr.buffer中的偏移量。最后,将tr的内容保存在IPCThreadState的成员变量mOut中。
回到IPCThreadState::transact函数中,接下去看,(flags & TF_ONE_WAY) == 0为true,并且reply不为空,所以最终进入到waitForResponse(reply)这条路径来。我们看一下waitForResponse函数的实现:
- status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
- {
- int32_t cmd;
- int32_t err;
-
- while (1) {
- if ((err=talkWithDriver()) < NO_ERROR) break;
- err = mIn.errorCheck();
- if (err < NO_ERROR) break;
- if (mIn.dataAvail() == 0) continue;
-
- cmd = mIn.readInt32();
-
- IF_LOG_COMMANDS() {
- alog << "Processing waitForResponse Command: "
- << getReturnString(cmd) << endl;
- }
-
- switch (cmd) {
- case BR_TRANSACTION_COMPLETE:
- if (!reply && !acquireResult) goto finish;
- break;
-
- case BR_DEAD_REPLY:
- err = DEAD_OBJECT;
- goto finish;
-
- case BR_FAILED_REPLY:
- err = FAILED_TRANSACTION;
- goto finish;
-
- case BR_ACQUIRE_RESULT:
- {
- LOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT");
- const int32_t result = mIn.readInt32();
- if (!acquireResult) continue;
- *acquireResult = result ? NO_ERROR : INVALID_OPERATION;
- }
- goto finish;
-
- case BR_REPLY:
- {
- binder_transaction_data tr;
- err = mIn.read(&tr, sizeof(tr));
- LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");
- if (err != NO_ERROR) goto finish;
-
- if (reply) {
- if ((tr.flags & TF_STATUS_CODE) == 0) {
- reply->ipcSetDataReference(
- reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
- tr.data_size,
- reinterpret_cast<const size_t*>(tr.data.ptr.offsets),
- tr.offsets_size/sizeof(size_t),
- freeBuffer, this);
- } else {
- err = *static_cast<const status_t*>(tr.data.ptr.buffer);
- freeBuffer(NULL,
- reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
- tr.data_size,
- reinterpret_cast<const size_t*>(tr.data.ptr.offsets),
- tr.offsets_size/sizeof(size_t), this);
- }
- } else {
- freeBuffer(NULL,
- reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
- tr.data_size,
- reinterpret_cast<const size_t*>(tr.data.ptr.offsets),
- tr.offsets_size/sizeof(size_t), this);
- continue;
- }
- }
- goto finish;
-
- default:
- err = executeCommand(cmd);
- if (err != NO_ERROR) goto finish;
- break;
- }
- }
-
- finish:
- if (err != NO_ERROR) {
- if (acquireResult) *acquireResult = err;
- if (reply) reply->setError(err);
- mLastError = err;
- }
-
- return err;
- }